Modeling associations between genetic markers using Bayesian networks
نویسندگان
چکیده
منابع مشابه
Modeling associations between genetic markers using Bayesian networks
MOTIVATION Understanding the patterns of association between polymorphisms at different loci in a population (linkage disequilibrium, LD) is of fundamental importance in various genetic studies. Many coefficients were proposed for measuring the degree of LD, but they provide only a static view of the current LD structure. Generative models (GMs) were proposed to go beyond these measures, giving...
متن کاملThe modeling of body's immune system using Bayesian Networks
In this paper, the urinary infection, that is a common symptom of the decline of the immune system, is discussed based on the well-known algorithms in machine learning, such as Bayesian networks in both Markov and tree structures. A large scale sampling has been executed to evaluate the performance of Bayesian network algorithm. A number of 4052 samples wereobtained from the database of the Tak...
متن کاملA Bayesian approach to modeling associations between pulsatile hormones.
SUMMARY Many hormones are secreted in pulses. The pulsatile relationship between hormones regulates many biological processes. To understand endocrine system regulation, time series of hormone concentrations are collected. The goal is to characterize pulsatile patterns and associations between hormones. Currently each hormone on each subject is fitted univariately. This leads to estimates of th...
متن کاملBayesian inference of phylogenetic networks from bi-allelic genetic markers
Phylogenetic networks are rooted, directed, acyclic graphs that model reticulate evolutionary histories. Recently, statistical methods were devised for inferring such networks from either gene tree estimates or the sequence alignments of multiple unlinked loci. Bi-allelic markers, most notably single nucleotide polymorphisms (SNPs) and amplified fragment length polymorphisms (AFLPs), provide a ...
متن کاملLearning a forest of Hierarchical Bayesian Networks to model dependencies between genetic markers
We propose a novel probabilistic graphical model dedicated to represent the statistical dependencies between genetic markers, in the Human genome. Our proposal relies on building a forest of hierarchical latent class models. It is able to account for both local and higher-order dependencies between markers. Our motivation is to reduce the dimension of the data to be further submitted to statist...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bioinformatics
سال: 2010
ISSN: 1367-4803,1460-2059
DOI: 10.1093/bioinformatics/btq392